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Abstract

The NEXT Generation Health study investigates the dating violence of adolescents using a survey 

questionnaire. Each student is asked to affirm or deny multiple instances of violence in his/her 

dating relationship. There is, however, evidence suggesting that students not in a relationship 

responded to the survey, resulting in excessive zeros in the responses. This paper proposes 

likelihood-based and estimating equation approaches to analyze the zero-inflated clustered binary 

response data. We adopt a mixed model method to account for the cluster effect, and the model 

parameters are estimated using a maximum-likelihood (ML) approach that requires a Gaussian–

Hermite quadrature (GHQ) approximation for implementation. Since an incorrect assumption on 

the random effects distribution may bias the results, we construct generalized estimating equations 

(GEE) that do not require the correct specification of within-cluster correlation. In a series of 

simulation studies, we examine the performance of ML and GEE methods in terms of their bias, 

efficiency and robustness. We illustrate the importance of properly accounting for this zero 

inflation by reanalyzing the NEXT data where this issue has previously been ignored.
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1. Introduction

In public health studies, clustered or longitudinal binary responses may be collected on a 

group of individuals where only a subset of these individuals are susceptible to having a 

positive response. For example, questionnaires may ask teenagers who are dating to answer 

a series of questions about dating violence. As in the NEXT Generation Health Study, a 

larger proportion of all zero responses are observed than would occur by chance; 

presumably many individuals who are not dating filled in all zeros on the questionnaire (also 

known as “structural zeros”). While there may be alternative reasons for structural zeros, for 

example, participants giving socially desirable responses, we believe this accounts for only a 

small fraction of zero inflation. Interest is in making inference about the correlated binary 

responses for those who are susceptible (i.e., inference about dating violence among 

individuals who were dating).

There is an extensive literature on zero-inflated Poisson and binomial models [Lambert 

(1992); Hall (2000)] that provide early references, along with more recent work on zero-

inflated ordinal data [Kelley and Anderson (2008)] and zero-inflated sum score data with 

randomized responses [Cruyff et al. (2008)]. Min and Agresti (2002) reviewed various 

statistical models incorporating zero inflation in both discrete and continuous outcomes for 

cross-sectional data. Diop, Diop and Dupuy (2011) discussed cross-sectional binary 

regression with zero inflation, and proved the model identifiability when at least one 

covariate is continuous. Hall (2000) first considered longitudinal or clustered data with zero-

inflated binomial or Poisson outcomes. They incorporated a random effect structure to 

model the within-subject correlation and proposed an EM algorithm to estimate the 

parameters. Hall and Zhang (2004) extended the work of Hall (2000) by proposing a 

generalized estimation equation (GEE) approach to model several zero-inflated distributions 

in a longitudinal setting. Min and Agresti (2005) presented a Hurdle model with random 

effects for repeated measures of zero-inflated count data. There has been no work, however, 

on zero-inflated clustered binary data.

A component of the NEXT Generation Health Study examines the prevalence and correlates 

of dating violence among 2787 tenth-grade students, following them over seven years. 

Dating violence is common among adolescents, may impact adolescent expectations 

regarding adult intimate relationships [Collins (2003)], and has been found to be associated 

with increased risk of depression and engagement in high-risk behaviors [Ackard, Eisenberg 

and Neumark-Sztainer (2007) and Exner-Cortens, Eckenrode and Rothman (2013)]. Thus, 

dating violence among adolescents merits interest from both developmental and public 

health perspectives [Offenhauer and Buchalter (2011)].

Investigators involved in the NEXT study are primarily interested in identifying the risk 

factors associated with dating violence. Haynie et al. (2013) found a relationship between 

high-risk behaviors (i.e., depressive symptoms, alcohol use, smoking and drug use), gender 

and the prevalence of dating violence victimization. A total of 10 questions were asked 

about dating violence. Five of the questions were on dating violence victimization: did your 

partner (1) insult you in front of others, (2) swear at you, (3) threaten you, (4) push or shove 

you, or (5) throw anything that could hurt you; the other five were similar questions on 
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perpetration: did you (1) insult your partner in front of others, (2) swear at your partner, (3) 

threaten your partner, (4) push or shove your partner, or (5) throw anything that could hurt 

your partner? As illustrated in Figure 1, the distribution of the number of “yes” responses is 

clumped at zero. When we fit the frequencies with a zero-inflated binomial distribution, the 

zero-inflation probability is estimated to be about 58%. The binomial distribution yields a 

poor fit to the frequencies for two reasons. First, the prevalence of “yes” responses is 

unequal across different questions; second, the responses from the same subject are 

correlated. But this only serves as an intuitive visualization of zero inflation. One can argue 

that the clump of zeros might be due to the high correlation of the binary responses within 

the same subject; and, therefore, we also fit the generalized linear mixed model (GLMM) 

and plot the fitted frequencies in Figure 1. GLMM attempts to fit the spike at 0, and hence 

tends to overestimate the within-subject correlation. In this paper, we hope to explore 

whether zero inflation exists while allowing for the cluster effects. We propose maximum-

likelihood (ML) and GEE approaches to simultaneously account for the zero inflation and 

clustering in the multiple binary responses. The major difference between our work and the 

previous work is that Hall (2000), Hall and Zhang (2004), and Min and Agresti (2005) all 

considered the zero inflation at the “observation level,” while in our paper the zero inflation 

is at the “subject level” (meaning that with a structural zero, all the binary responses from a 

subject are zero). For our dating violence example, subjects have all zero responses because 

they are not susceptible to the condition (e.g., in a relationship). The proposed methods are 

evaluated and compared in simulation studies. We then reexamine the relationships between 

high-risk behaviors and dating violence among teenagers using the proposed analysis 

strategy accounting for zero inflation.

In Section 2 we present both maximum-likelihood and GEE approaches for parameter 

estimation. Section 3 discusses the identifiability of the proposed model and proposes a 

likelihood ratio test for zero inflation. Simulation study results are presented in Section 4. 

The NEXT dating violence data is analyzed in Section 5, and a discussion follows in Section 

6.

2. Method

Let Yi = (Yi1, … , YiJ )′ be the multivariate binary outcome for subject i (i = 1, … , N), and 

Xi = (Xi1, … , XiJ)′ be the corresponding matrix of covariates. Let Zi be the latent class, so 

that Yi always takes the value of 0 (structural zero) if Zi = 0, and Yi follows a multivariate 

binary distribution with density f (Yi; θ) if Zi = 1, where θ is a vector of parameters. We 

suppress the subscript i when there is no confusion. Let p = Pr(Z = 1) be the prevalence of 

the latent class 1. In our example, Zi = 1 indicates that subject i is susceptible to the 

possibility of dating violence (i.e., potential of answering the dating violence questions in a 

positive fashion), while Zi = 0 indicates that the subject is not susceptible.

2.1. Maximum-likelihood estimation

If both Y and Z are observed, the individual contribution to the full data likelihood is
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The observed likelihood of Y is then given by

Here we assume that the zero-inflation probability p is the same across all the subjects in the 

sample. This could easily be extended to allow p to depend on covariates, for example, with 

a logistic regression model. We use a generalized linear mixed effects model (GLMM) to 

describe the multivariate distribution, f(Y; θ):

where πij (bi) = Pr(Yij = 1| Xij, bi), bi is the vector of random effects following the 

multivariate normal distribution MVN(0, Δ), Zij is the design matrix of the random effects, 

and g is the known link function. The parameter vector θ consists of the parameter of 

interest γ and the nuisance parameters in the variance component Δ. Assume Yij ’s are 

mutually independent given Xij and bi, and let p(bi; Δ) be the probability density function of 

bi. Then the likelihood for subject i becomes

The integral with respect to the random effects can be approximated by Gaussian–Hermite 

quadrature as

where bi,q is the qth quadrature grid point and wq is the associated weight [Abramowitz and 

Stegun (1972)].

The parameter estimation for p and θ can be found by maximizing the log-likelihood for all 

N subjects, . The variance estimation is calculated from the inverse of the 

observed information:
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and can be implemented by the optim function in R [R Core Team (2014)].

2.2. Generalized estimating equations (GEE)

Likelihood-based inference makes full distributional assumptions on Y|Z = 1. When these 

assumptions are correct, the estimator gains efficiency; otherwise, classical inference has 

poor statistical properties. We explore the estimating equations approach [Liang and Zeger 

(1986)] that only specifies a structure for the conditional mean E(Y|Z = 1, Xi). Suppose

(2.1)

where g is the known link function and β is the regression coefficients of interest. 

Unconditional on Zi, the “marginal” mean of Yi is given by

The estimating equations can then be written as

(2.2)

where  and Vi is the working covariance matrix for Yi [Liang and Zeger (1986)]. 

We can decompose Vi as  with Ai being the diagonal matrix of the variance of 

 and Ri being the working correlation matrix specified by 

some nuisance parameter η.

If the mean model (2.1) is correct, the estimating equations (2.2) are always consistent 

regardless of the working correlation, and choosing an approximately correct working 

correlation generally leads to improved efficiency. In the context of zero-inflated regression, 

we propose two ways to specify the working correlation: marginal and conditional 

specification. The marginal correlation directly makes assumptions on Ri, which is similar to 

the standard GEE: the marginal independent correlation assumes , the J-

dimensional identity matrix; the marginal exchangeable correlation assumes that 

, where 1J×J is the J × J square matrix of ones. We refer to these 

two different approaches as GEE-MI and GEE-ME, respectively.
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The conditional correlation exploits the zero-inflated structure and utilizes the conditional 

covariance, , to derive the unconditional covariance cov(Yi). A similar 

idea was first used by Hall and Zhang (2004) to derive their GEE estimator for observation-

level zero inflation. By the law of total covariance, for j ≠ j′ ,

where  is the (j, j′ ) element of , and  is the jth element of . The variance of Yij 

is given by . The conditional independence correlation assumes 

that , so the working correlation is  with the (j, j′) element as

The conditional exchangeable correlation assumes that

that is, a correlation of α between any Yij and Yij′ given Z = 1. Therefore, the (j, j′) element 

of the working correlation  is

We refer to these conditional GEE approaches as GEE-CI and GEE-CE, respectively.

Similar to the ordinary GEE, an unstructured working correlation can be assumed that 

allows for distinct correlations for each pair of outcomes. With the unstructured GEE, the 

marginal and conditional specification of working correlation are equivalent, that is,
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We refer to this approach as GEE-UN.

With each of the five forms of working correlation matrices, we could solve (2.2) using the 

Newton–Raphson method to obtain the corresponding parameter estimates . With the 

exchangeable or unstructured correlation structure, we iteratively update α from its moment 

estimator and β from equation (2.2) [Liang and Zeger (1986)]. According to the standard 

theory of GEE, the variance of the estimated  has the usual sandwich form , 

where

2.3. Marginal covariate effect

We note that the regression parameters in the GLMM and GEE are not directly comparable 

as they have different interpretations. The former is interpreted as the “subject-specific 

effect” conditional on a subject i, while the latter is the “population-averaged effect” or 

“marginal effect” [Zeger, Liang and Albert (1988)]. Thus, GLMM and GEE are not 

compatible for nonidentity link functions. In other words, if the GLMM is true, the marginal 

expectation by integrating out the random effects bi may not preserve the linear additive 

form of the covariates. However, for binary regression with a probit link and random 

intercept, GLMM and GEE are compatible. We adopt a probit random effects model for 

both the simulations and example analysis.

Let Φ and φ be the c.d.f. and p.d.f. of the standard normal distribution. Consider the 

generalized linear mixed effects model with a probit link and a random intercept only,

By integrating out bi, the marginal probability of Yij is computed as follows:

While GLMM estimates Pr(Yij = 1 |Xij, bi), GEE estimates Pr(Yij = 1| Xij). The latter is a 

probit regression model as well, with the regression coefficients, . This allows us 
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to compare the performance of GLMM and GEE by comparing the marginal effects of the 

covariates, which is our interest in the dating violence analysis of the NEXT study.

3. Model identifiability and test for zero inflation

In general, zero-inflated models are mixtures of two parametric parts, a point mass at zero 

(equivalently, a binary distribution with p = 0) and a parametric distribution for the 

nonstructural zero part. Typically, zero-inflated models are identified by observing a larger 

number of zeros than would be consistent with the parametric model. For example, with 

Poisson or binomial outcomes, one can observe excessive proportion of zeros with a 

histogram. For a single binary outcome, zero inflation cannot be distinguished from rare 

events, unless covariate dependence is introduced. When there is a continuous covariate X, 

zero inflation is identified because of the linear effect of X on the binary response through a 

known link function. Follmann and Lambert (1991) proved a weaker sufficient condition for 

identifiability when covariates are all categorical: to identify a two component mixture of 

logistic regressions with a binary response, the covariate vector needs to take at least 7 

distinct values. Kelley and Anderson (2008) also used the same argument to prove the 

identifiability of zero-inflated ordinal regression. Single binary outcome can be seen as a 

special case of our proposed model with J = 1 and . As more information is available 

with J > 1, our model is also identified under Follmann and Lambert’s condition.

Diop, Diop and Dupuy (2011) proved the model identifiability for the zero-inflated binary 

regression with at least one continuous covariate. Using a similar technique, we can prove 

our model identifiability. For GEE with a probit link, consider (β′, p) and (β∗′, p∗) to be two 

parameter vectors that yield the same conditional mean E(Yij| Xij), that is,

(3.1)

Equivalently, . Suppose the lth component of X (i.e., xl) is continuous, then 

we can take the partial derivative with respect to xl, which yields

(3.2)

Taking the partial derivative on both sides of (3.2) with respect to xl, and with some algebra, 

it follows that X′β = X′β∗, and hence β = β∗. From (3.1), we further get p = p∗. This proves 

the identifiability GEE-CI and GEE-MI. In GEE-UN, the association parameters are indeed 

obtained from a moment estimator of the correlation between Yij and Yij′. Since the mean 

model is identified, the variance and correlation are also identified. For exchangeable 
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working correlation, the association parameter is the “average” correlation between all Yij 

and Yij′ pairs with j ≠ j′, which is identifiable as well.

We now prove the identifiability of the random effects model (2.1) with a probit link. With 

normally distributed random effects, the mean of Yij could be marginalized as 

, where Δ is the variance–covariance matrix of random effects bi. We 

further assume that a continuous covariate is contained in X but not in Z. Then the same 

argument of (3.2) still applies by denoting  as β, which proves the identifiability 

of the regression coefficients up to a scale. Now it suffices to prove the identifiability of Δ. 

Denote αjj′ as the correlation coefficient of Yij and Yij′ (j ≠ j′ ) given Z = 1. Note that from 

Section 2.2, we have

Since β is identifiable,  is also identifiable. Therefore, if two parameter 

vectors θ = (γ′, p, Δ)′ and θ∗ = (γ∗′, p∗, Δ∗)′ lead to the same cov(Yij, Yij′) and EYij, αjj′ must 

be the same. Furthermore, the regular GLMM is identifiable, suggesting that the correlation 

structure αjj′ conditional on Z = 1 is uniquely defined by Δ. Hence, we prove Δ = Δ∗, and, 

consequently, the identifiability of the ML estimator is established.

We also note that when  and no covariates are available, the repeated binary counts 

could be collapsed into a binomial distribution. The problem then reduces to the zero-

inflated binomial model, which is clearly identifiable. In the presence of the random effects, 

collapsing the binary counts leads to an over-dispersed binomial distribution. Hall and 

Berenhaut (2002) discussed the zero-inflated beta-binomial model, where the over-

dispersion is controlled by a beta distributed random intercept. Our model assumes that the 

over-dispersion comes from a normal distributed random intercept.

Another way to view the proposed model is a mixture of random effect distributions. Recall 

that Yij follows a Bernoulli distribution with probability πij, given by

Instead of introducing the latent class Zi, we assume that bi is a mixture of normal 

distribution and a point mass at −∞:
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When bi = −∞, the probability πij is always 0 for j = 1, … , J, so Yi is the structural zero. It 

is easy to show that the likelihood is exactly the same as the proposed model.

In practice, one may wish to test for the existence of zero inflation, which can be performed 

under the parametric model framework. The likelihood ratio statistic is given by

where l1 is the maximized log-likelihood for the zero-inflated model, and l0 is the 

maximized log-likelihood for the ordinary GLMM. As the null hypothesis (p = 0) is on the 

boundary of the parameter space, the asymptotic null distribution of Λ is a mixture of  and 

point mass at 0, with equal mixture probabilities [Self and Liang (1987)]. Theoretically, we 

could also construct a score test statistic similar to the test proposed by van den Broek 

(1995) for zero inflation in a Poisson distribution. However, for our problem, the likelihood 

function involves intractable integrals, making the score and information matrix both 

difficult to evaluate. So in our application, we apply the likelihood ratio test.

4. Simulation studies

Motivated by the NEXT study, the data generation for the simulation studies mimics the real 

example. To evaluate the statistical properties of the above methods, simulation studies of 

the true model and a misspecified model were run with two different levels of within-cluster 

correlation. A sample size of N = 2000 with a cluster size of J = 5 questions is considered. 

The simulations were repeated 5000 times to compare the performance of the naive 

estimator (GLMM, where the zero-inflation is ignored), the maximum-likelihood (ML) 

estimator and the five GEE estimators (GEE-MI, GEE-CI, GEE-ME, GEE-CE and GEE-

UN). We calculated the average (Mean) and standard deviation (SD) of the estimated 

parameters, average of the estimated standard errors (SE) and 95% CI coverage rates 

(COVER) based on the Wald intervals to evaluate the robustness and efficiency of the GEE 

and the maximum-likelihood approaches. Twenty Gaussian–Hermite quadrature points were 

used for computing the GLMM and ML estimators. We also tried 10 and 40 quadrature 

points as well as the adaptive quadrature with 250 simulated data sets. In our simulations, 

the results are very similar for differing number of quadrature points. Our experience for 

generalized linear mixed models with the logit link function is that Gaussian quadrature 

works very well, and in most situations AGQ is not needed. In terms of numerical 

efficiency, we found that the computation time for AGQ is about 10–20 times longer than 

the fixed quadrature.

The estimated parameters for ML and GLMM methods were marginalized, as we described 

in Section 2.3. In the following sections, we evaluate the performance of the maximum 
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likelihood and GEE under a correctly specified and a misspecified model. Additional 

simulation results are reported in the supplementary material [Fulton et al. (2015)], 

including (a) the performance of the proposed model with a smaller sample size (N = 500); 

(b) sensitivity of assuming a constant zero-inflation probability when the probability is 

affected by covariates; (c) performance of zero-inflated beta-binomial model.

4.1. Simulation one: Correctly specified model

We generated a continuous subject-level covariate Xi from a standard normal distribution 

and categorical covariate Qij = 1, …, 5 to denote the questions for each subject. The zero-

inflation indicator Zi was generated from Bernoulli(p) with p = 0.7. The outcome Yij was 

generated from a probit random effects model:

where I(·) is the indicator function and bi is the random intercept following a normal 

distribution . We fixed the regression parameters γ = (γ0, γ1, γ2, γ3, γ4, γ5)′ = (0, 1, 

−0.5, −0.4, 0.2, 0.4)′ . The variance component  was taken to be 0.52 and 1.52, 

respectively, to reflect weak (Pearson correlation of about 0.1) and strong (Pearson 

correlation of about 0.45) within-cluster correlations. The simulation results are shown in 

Tables 1 and 2, where the true regression parameters are the marginal covariate effects given 

by .

Both the ML and the five GEE methods perform reasonably well, in terms of small bias and 

good CI coverage rate. GLMM is seriously biased with poor CI coverage. It can be seen that 

the ML method is the most efficient, as it makes use of the full distributional assumption of 

the observed data. On the contrary, GEE only relies on the first moments of the outcome. In 

estimating p, the zero-inflated probability, the SEs of the GEE approaches are more than 

twice as large as the SE of the ML method. The SEs for other parameters are also 

significantly smaller for the ML method.

Of the five GEE methods, we found that GEE-CE is the most efficient with the smallest SE, 

while GEE-MI is the least efficient. By exploiting the correlation structure induced by the 

zero-inflation process, the conditional independence and exchangeable working correlation 

both gain a substantial amount of efficiency, compared to their marginal counterparts. This 

result is consistent with the simulation results in Hall and Zhang (2004). The SEs for GEE-

CE and GEE-CI are quite close, implying that adding working dependence to the outcome 

given Zi = 1 would not help much as long as the dependence due to zero inflation is 

accounted for. We did observe a bigger improvement of GEE-CE versus GEE-CI for the 

strong correlation case. But the improvement of GEE-CI versus GEE-MI is even larger. 

Therefore, we recommend that it is more important to make use of the zero-inflation 

structure in the GEE estimators. Although GEE-UN has the most flexible form of working 
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correlation, it is not as efficient as GEE-CI or GEE-CE, probably due to estimating a larger 

number of nuisance parameters. We found that GEEs may occasionally not have a solution 

or have a boundary solution (p̂ = 1) in about 1–2% of the simulations with σb = 1.5. Our 

experience is that nonconvergence or boundary solutions occur more often when the 

covariate effects are weaker, the within-cluster correlation is stronger, the true zero-inflation 

probability is closer to 1, or the model is more severely misspecified.

4.2. Simulation two: Model misspecification

We consider a misspecified model where only the first three questions are correlated and the 

last two are independent. The data generation for Yij with j = 1, 2, 3 was the same as in 

Section 3.1, but Yij for j = 4, 5 was generated as follows:

The random intercept bi was not added to the last two questions, but a factor of  was 

divided to the coefficients to keep the marginalized regression coefficients the same. In this 

case, the ML estimator is from a misspecified model since the random intercept model 

imposes correlation among all the questions. For GEE, only the working correlation is 

misspecified, while the first moment of Yij is still correct. The simulation results are 

presented in Tables 3 and 4.

With σb = 0.5, the ML approach is almost unbiased for estimating p as well as the regression 

coefficients. When σb increases to 1.5, the ML estimator becomes slightly biased with poor 

CI coverage, especially for p and β0. The estimation of other parameters appears to be robust 

to the model misspecification, except that the SEs for β2 and β3 overestimate the true 

variability. On the other hand, the five GEE methods all perform quite well, in terms of little 

bias and close-to-nominal coverage rates. Similar to the previous simulation study, we 

observed that about 1% of the GEE simulations did not converge for σb = 1.5. Although the 

maximum-likelihood approach is biased, its standard error is much smaller than the GEE 

approaches. For example, the ML estimator for p in Table 4 has a SE only a quarter as large 

as that of the GEE-CI and GEE-CE estimators. As a result of the variance-bias trade-off, the 

mean squared error for the ML estimator is still smaller than GEE. If the interest is in 

estimation, one can still argue that the ML performs better; but if the interest is in hypothesis 

testing, GEE methods are preferred, as they are more robust and preserve the correct Type I 

error rate.

From the above two sets of simulation studies, we would generally recommend the ML 

estimator in practice because of its high efficiency. The correlation structure of the outcome 

is critical in identifying the zero-inflation process. Therefore, a full parametric assumption 

for the correlation can lead to good efficiency in the estimation. However, if this parametric 

assumption does not hold, the ML estimator could have poor CI coverage rates. In order to 

perform hypothesis testing, we would prefer the GEE approaches, which only rely on the 
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correct mean model and are not sensitive to the working correlation assumption. Among the 

five GEE approaches, the GEE-CI and GEE-CE are the most favorable, because they are 

more efficient by exploiting the dependence structure induced by the zero-inflation process. 

In practice, the GEE-CI and GEE-CE estimators may be computed in conjunction with the 

ML estimator as a sensitivity analysis.

5. Dating violence data example

In this section we fit our proposed ML and GEE models to the dating violence example, 

together with the naive GLMM model. A total of 2787 students were enrolled in the study, 

among which 664 left all the dating violence questions blank. These 664 subjects are either 

not in a relationship, and thus skipped these questions, or they did not respond at all to the 

whole survey. In the remaining 2123 subjects, 39 were excluded because they only answered 

part of the dating violence questions, and 61 were excluded because they have missing data 

in the covariates. The final analysis sample was N = 2023. The clustered outcomes of 

interest (Yij ) are the ten questions of dating violence, including five victimization and five 

perpetration questions. We can see from Figure 1 that the frequency histogram of “yes” 

responses shows a huge spike at 0. It seems likely that some students who answered all the 

questions with “no” were not in a relationship, that is, a zero inflation of the outcome. 

Define the latent variable Zi = 1 if the subject is in a relationship and 0 otherwise. We 

included gender (GENDERi), depressive symptoms (DSi), family relationship (FRi) and 

family influence (F Ii) as the predictors of Yij given Zi = 1. The DS score comes from the 

questionnaire of depressive symptoms and is on the continuous scale ranging from 1 to 5, 

with the larger score indicating worse depressive symptoms. The FR (ranging from 0 to 10) 

measures the participant’s satisfaction with the relationship in his/her family, with 10 being 

a very good relationship. The FI score (ranging from 1 to 7) is the family influence on the 

participants not verbally or physically abusing their romantic partner, with a higher score 

being greater influence. We adjust for question number as a factor and question type 

(victimization vs. perpetration), in order to account for different prevalence of yes responses. 

The interactions between question type and other covariates (GENDERi, DSi, FRi and FIi) 

are also included. The summary statistics of these variables are described in Table 5.

Denote Xij to be the design matrix including all the covariates and interaction terms 

mentioned above. We fit the probit random effects model

(5.1)

where  is the random intercept. This model has the same marginal mean as the 

marginal probit regression model:

(5.2)
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as  for k = 0, …, 6. For comparative purposes, we report the marginal regression 

coefficients β for all the analyses.

The results of the ML, GLMM and GEE estimations are listed in Table 6. From the ML 

estimation, we can see that all four subject-level covariates are significant: the probability of 

dating violence perpetration was higher for females, those who are more depressed, those 

who have a worse relationship in their family, and those who are less influenced by their 

guardians. The interaction terms between question type and gender, and question type and 

family influence were both significant, suggesting (a) boys are more likely to be the victims 

of dating violence, and (b) the family influence has a slightly higher impact on dating 

violence perpetration than victimization. The finding regarding greater male dating violence 

victimization in this age is in line with previous studies [Foshee (1996); Archer (2000)]. The 

impacts of depression score and family relationship are similar regardless of question type. 

The directions of association are expected and consistent with some of the findings in 

Haynie et al. (2013). The zero-inflation probability is estimated to be 0.571, that is, we 

expect about 43% of the sample (about 860 subjects) to be structural zeros. We suspect that 

a majority of them were not in a relationship, but answered all the dating violence questions 

with “no.” However, there may be alternative reasons for the zero inflation, for example, 

some kids may give socially desirable answers in the survey and hence underreport dating 

violence. However, we believe that this only accounts for a small fraction of the structural 

zeros. The likelihood ratio test statistic for zero inflation is Λ = 65.2 (p-value < 0.001). The 

parameter estimations by GEE are generally close to ML, but the standard errors are larger. 

The naive GLMM method estimated smaller covariate effects, which could be biased due to 

ignoring the zero-inflated nature of the data.

As pointed out by a referee, the zero-inflation problem could be avoided by including a filter 

question of asking whether the subject had a relationship or not. The filter question was not 

included because the study investigators felt that it was an unreliable question to ask. 

Relationships between teenagers today cannot easily be characterized, and the investigators 

felt that explicitly asking this question may limit important responses about violence [Short 

et al. (2013)]. There are other cases where the susceptible population cannot be ascertained 

accurately. For example, in drug abuse studies, specifically asking whether individuals are 

drug abusers might not be a question that would result in a reliable response. But we may be 

interested in whether the abusers seek particular types of treatment. Additionally, this 

approach may be relevant to questions regarding immigration status, where there may be 

legal implications (perceived or real) in answering, and in questions on mental health status, 

where the respondent may have a reduced ability to accurately report their status.

6. Discussion

In public health research, excessive zero responses may occur if the population which is 

susceptible to respond is not carefully screened or is unknown. The resulting zero inflation 

may have an effect on the results obtained by conventional methods of analysis. In the 

NEXT Generation Health Study, investigators were interested in identifying predictors of 

dating violence in teenagers. Examining these regression relationships are of interest for 
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those individuals who are in a relationship (i.e., the susceptible condition). Many more 

individuals completed this study component than investigators thought would be in a 

relationship at this age. This led to what appears to be zero-inflated clustered binary data. 

We developed both ML and GEE approaches for analyzing such data. Through simulations 

and analysis of the real data example, we found that the ML approach is substantially more 

efficient than the GEE approaches. However, under moderate model misspecification, the 

ML approach may result in biased inference. It is recommended that, as a sensitivity 

analysis, both ML and GEE approaches be applied in applications.

In the GEE approach, we treat the regression parameters and nuisance working correlation 

as orthogonal, that is, a GEE1 approach with the parameters in the working correlation 

estimated by a moment estimator. Potential efficiency gain could be achieved using an 

improved version of GEE1 [Prentice (1988)] or GEE2 [Prentice and Zhao (1991); Liang, 

Zeger and Qaqish (1992)], by establishing another set of estimating equations on the second 

moment. However, GEE2 requires a correct variance structure with working third and fourth 

moment model, which is hard to verify with the presence of zero inflation, and results in 

bias under second, third and fourth moment misspecification. The previous work of Hall and 

Zhang (2004) adopted Prentice and Zhao’s GEE2 that maintains the parameter orthogonality 

in their second moment estimating equations, and they argued that only making a first 

moment assumption may lead to parameter nonidentifiability. This is true in their case, 

where the zero-inflation probability is at the observation level, so pij and  might be 

confounded in . However, in the case of subject-level zero inflation, we have shown the 

model identifiability of the GEE1 estimators.

In principle, zero-inflated models cannot be identified nonparametrically; parametric 

assumptions for the nonzero part play a fundamental role in model estimation. For example, 

zero inflation in Poisson and binomial data can be determined by the lack of fit in the zero 

cells of these respective distributions. In this paper, we assume that the nonzero distribution 

is given by a generalized linear mixed model with normal random effects. The ML approach 

exploits the correlation structure in order to distinguish structural zeros and random zeros. 

Intrinsically, GEE only uses the mean structure of the binary data in order to estimate 

regression parameters and, unlike ML, does not use the entire distribution for estimation.

In our application, there were very few missing data. However, in many studies with 

sensitive psychological or behavioral questions, there may be informative missingness. An 

advantage of the ML approach is that it can more easily be extended to account for 

informative missing responses [see Follmann and Wu (1995), e.g.]. The proposed 

methodology implicitly assumes that the subjects answer the questions truthfully. If this 

assumption does not hold, the parameter estimation is likely to be biased. We could 

formulate a likelihood approach if we had good prior information about the distribution of 

false negative occurrence across the questions. This would require a verification subsample 

corresponding to the survey questions (maybe obtained through interviews of parents and 

friends) on a fraction of teenagers.

Fulton et al. Page 15

Ann Appl Stat. Author manuscript; available in PMC 2016 February 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The zero-inflation probability in our model is assumed to be constant, but it is 

straightforward to include covariates in both ML and GEE approaches. In addition, our 

focus is on a cross-sectional inference, that is, analyzing the dating violence data at one 

point in time (11th grade). Understanding behavior change from adolescence over time is 

interesting but also challenging. In the longitudinal setting, the zero-inflation probability is 

time-dependent that can probably be modeled by a latent Markov process. We will leave it 

for future exploration.
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Fig. 1. 
Distribution of subjects’ responses to five dating violence victimization questions and the 

fitted probabilities using a zero-inflated binomial model (black squares).
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Table 1

The mean of 5000 simulations of estimated coefficients (Mean), empirical standard deviation (SD), average 

standard error (SE) and the 95% interval coverage rate (COVER) for the maximum-likelihood, naive and GEE 

methods of the correctly specified model with σb = 0.5, N = 2000

Parameter* True Mean SD SE COVER

ML Pr(Z = 1) 0.700 0.700 0.014 0.014 0.949

σ b 0.500 0.499 0.040 0.039 0.953

β 0 0.000 0.000 0.039 0.040 0.959

β 1 0.894 0.895 0.027 0.027 0.949

β 2 −0.447 −0.448 0.051 0.051 0.951

β 3 −0.358 −0.358 0.050 0.051 0.956

β 4 0.179 0.179 0.051 0.050 0.949

β 5 0.358 0.358 0.050 0.051 0.948

GLMM σ b 0.500 1.352 0.047 0.046 0.000

β 0 0.000 −0.444 0.029 0.030 0.000

β 1 0.894 0.570 0.028 0.025 0.000

β 2 −0.447 −0.301 0.034 0.034 0.013

β 3 −0.358 −0.239 0.033 0.034 0.060

β 4 0.179 0.114 0.032 0.032 0.489

β 5 0.358 0.224 0.031 0.032 0.015

GEE-MI Pr(Z = 1) 0.700 0.704 0.041 0.040 0.951

β 1 0.894 0.897 0.061 0.061 0.947

β 2 −0.447 −0.448 0.060 0.060 0.950

β 3 −0.358 −0.358 0.056 0.057 0.952

β 4 0.179 0.179 0.055 0.054 0.952

β 5 0.358 0.358 0.059 0.059 0.946

GEE-CI Pr(Z = 1) 0.700 0.701 0.029 0.029 0.948

β 0 0.000 0.001 0.069 0.070 0.955

β 1 0.894 0.897 0.044 0.043 0.953

β 2 −0.447 −0.449 0.055 0.056 0.953

β 3 −0.358 −0.359 0.053 0.054 0.958

β 4 0.179 0.179 0.052 0.052 0.951

β 5 0.358 0.360 0.056 0.056 0.946

GEE-ME Pr(Z = 1) 0.700 0.701 0.032 0.032 0.953

β 0 0.000 0.001 0.077 0.078 0.953

β 1 0.894 0.898 0.049 0.049 0.949

β 2 −0.447 −0.449 0.058 0.058 0.955

β 3 −0.358 −0.359 0.055 0.056 0.956

β 4 0.179 0.180 0.054 0.054 0.952
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Parameter* True Mean SD SE COVER

β 5 0.358 0.359 0.057 0.058 0.950

GEE-CE Pr(Z = 1) 0.700 0.701 0.029 0.029 0.950

β 0 0.000 0.001 0.069 0.070 0.955

β 1 0.894 0.897 0.044 0.043 0.953

β 2 −0.447 −0.449 0.055 0.056 0.954

β 3 −0.358 −0.359 0.052 0.054 0.958

β 4 0.179 0.179 0.052 0.052 0.951

β 5 0.358 0.360 0.056 0.056 0.946

GEE-UN Pr(Z = 1) 0.700 0.702 0.036 0.036 0.952

β 0 0.000 0.000 0.085 0.085 0.952

β 1 0.894 0.897 0.053 0.053 0.948

β 2 −0.447 −0.448 0.058 0.059 0.954

β 3 −0.358 −0.358 0.055 0.056 0.954

β 4 0.179 0.179 0.055 0.054 0.952

β 5 0.358 0.359 0.058 0.058 0.948

*
P(Yij = 1|Xi, Qij, Zi = 1) Φ{β0 + β1 Xij + β2I(Qij = 2) + β3I(Qij = 3) + β4I(Qij = 4) + β5I(Qij = 5)}.
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Table 2

The mean of 5000 simulations of estimated coefficients (Mean), empirical standard deviation (SD), average 

standard error (SE) and the 95% interval coverage rate (COVER) for the maximum-likelihood, naive and GEE 

methods of the correctly specified model with σb = 1.5, N = 2000

Parameter* True Mean SD SE COVER

ML Pr(Z = 1) 0.700 0.701 0.024 0.024 0.951

σ b 1.500 1.503 0.088 0.089 0.955

β 0 0.000 −0.001 0.053 0.053 0.950

β 1 0.555 0.555 0.033 0.033 0.949

β 2 −0.277 −0.278 0.037 0.038 0.952

β 3 −0.222 −0.222 0.037 0.037 0.949

β 4 0.111 0.111 0.036 0.036 0.954

β 5 0.222 0.222 0.037 0.037 0.951

GLMM σ b 1.500 2.248 0.071 0.073 0.000

β 0 0.000 −0.419 0.032 0.029 0.000

β 1 0.555 0.384 0.029 0.026 0.000

β 2 −0.277 −0.204 0.027 0.027 0.230

β 3 −0.222 −0.163 0.027 0.027 0.387

β 4 0.111 0.079 0.025 0.026 0.763

β 5 0.222 0.155 0.025 0.026 0.271

GEE-MI Pr(Z = 1) 0.700 0.712 0.083 0.088 0.949

β 0 0.000 −0.002 0.161 0.170 0.966

β 1 0.555 0.560 0.072 0.075 0.962

β 2 −0.277 −0.279 0.050 0.050 0.949

β 3 −0.222 −0.223 0.046 0.046 0.950

β 4 0.111 0.111 0.040 0.040 0.954

β 5 0.222 0.223 0.047 0.049 0.953

GEE-CI Pr(Z = 1) 0.700 0.709 0.064 0.064 0.954

β 0 0.000 −0.006 0.121 0.123 0.969

β 1 0.555 0.556 0.056 0.057 0.958

β 2 −0.277 −0.278 0.045 0.045 0.951

β 3 −0.222 −0.222 0.042 0.042 0.946

β 4 0.111 0.111 0.038 0.039 0.952

β 5 0.222 0.223 0.044 0.045 0.951

GEE-ME Pr(Z = 1) 0.700 0.706 0.058 0.057 0.947

β 0 0.000 −0.001 0.115 0.114 0.954

β 1 0.555 0.557 0.053 0.053 0.952

β 2 −0.277 −0.279 0.045 0.044 0.948

β 3 −0.222 −0.223 0.042 0.042 0.947
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Parameter* True Mean SD SE COVER

β 4 0.111 0.111 0.039 0.039 0.955

β 5 0.222 0.223 0.043 0.044 0.953

GEE-CE Pr(Z = 1) 0.700 0.707 0.056 0.056 0.951

β 0 0.000 −0.003 0.111 0.111 0.956

β 1 0.555 0.556 0.052 0.051 0.951

β 2 −0.277 −0.278 0.043 0.043 0.952

β 3 −0.222 −0.222 0.041 0.041 0.950

β 4 0.111 0.111 0.038 0.038 0.955

β 5 0.222 0.223 0.043 0.043 0.954

GEE-UN Pr(Z = 1) 0.700 0.709 0.068 0.068 0.950

β 0 0.000 −0.003 0.132 0.134 0.959

β 1 0.555 0.558 0.060 0.060 0.952

β 2 −0.277 −0.278 0.046 0.046 0.948

β 3 −0.222 −0.223 0.044 0.043 0.948

β 4 0.111 0.111 0.039 0.039 0.951

β 5 0.222 0.223 0.045 0.046 0.952

*
P(Yij = 1|Xi, Qij, Zi = 1) = β{β0 + β1Xij + β2I(Qij = 2) + β3I(Qij = 3) + β4I(Qij = 4) + β5I(Qij = 5)}.
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Table 3

The mean of 5000 simulations of estimated coefficients (Mean), empirical standard deviation (SD), average 

standard error (SE) and the 95% interval coverage rate (COVER) for the maximum-likelihood, naive and GEE 

methods of the misspecified model with σb = 0.5, N = 2000

Parameter* True Mean SD SE COVER

ML Pr(Z = 1) 0.700 0.706 0.013 0.013 0.925

σ b 0.500 0.273 0.047 0.047 0.000

β 0 0.000 −0.008 0.038 0.039 0.953

β 1 0.894 0.899 0.024 0.024 0.948

β 2 −0.447 −0.446 0.051 0.053 0.963

β 3 −0.358 −0.357 0.049 0.053 0.964

β 4 0.179 0.177 0.053 0.052 0.949

β 5 0.358 0.355 0.053 0.053 0.949

GLMM σ b 0.500 1.176 0.042 0.040 0.000

β 0 0.000 −0.441 0.029 0.030 0.000

β 1 0.894 0.570 0.028 0.024 0.000

β 2 −0.447 −0.303 0.035 0.036 0.019

β 3 −0.358 −0.241 0.034 0.035 0.080

β 4 0.179 0.114 0.034 0.034 0.519

β 5 0.358 0.223 0.033 0.034 0.021

GEE-MI Pr(Z = 1) 0.700 0.704 0.041 0.040 0.951

β 0 0.000 −0.002 0.095 0.095 0.951

β 1 0.894 0.896 0.059 0.060 0.949

β 2 −0.447 −0.447 0.059 0.060 0.953

β 3 −0.358 −0.357 0.056 0.057 0.953

β 4 0.179 0.178 0.057 0.057 0.950

β 5 0.358 0.358 0.061 0.062 0.948

GEE-CI Pr(Z = 1) 0.700 0.701 0.030 0.030 0.950

β 0 0.000 0.000 0.070 0.071 0.955

β 1 0.894 0.897 0.044 0.044 0.951

β 2 −0.447 −0.449 0.055 0.056 0.956

β 3 −0.358 −0.358 0.053 0.054 0.957

β 4 0.179 0.179 0.055 0.055 0.949

β 5 0.358 0.360 0.059 0.059 0.951

GEE-ME Pr(Z = 1) 0.700 0.702 0.034 0.033 0.951

β 0 0.000 0.000 0.079 0.080 0.952

β 1 0.894 0.897 0.049 0.050 0.949

β 2 −0.447 −0.448 0.058 0.058 0.955

β 3 −0.358 −0.358 0.055 0.056 0.954
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Parameter* True Mean SD SE COVER

β 4 0.179 0.179 0.057 0.057 0.952

β 5 0.358 0.359 0.061 0.061 0.951

GEE-CE Pr(Z = 1) 0.700 0.701 0.030 0.030 0.951

β 0 0.000 0.000 0.070 0.071 0.955

β 1 0.894 0.897 0.044 0.044 0.950

β 2 −0.447 −0.448 0.055 0.056 0.955

β 3 −0.358 −0.358 0.053 0.054 0.956

β 4 0.179 0.179 0.055 0.055 0.950

β 5 0.358 0.359 0.059 0.059 0.952

GEE-UN Pr(Z = 1) 0.700 0.703 0.037 0.036 0.952

β 0 0.000 −0.001 0.086 0.087 0.951

β 1 0.894 0.897 0.053 0.054 0.948

β 2 −0.447 −0.448 0.058 0.059 0.953

β 3 −0.358 −0.358 0.055 0.056 0.954

β 4 0.179 0.179 0.057 0.057 0.950

β 5 0.358 0.359 0.061 0.062 0.950

*
P(Yij = 1|Xi, Qij ,Zi = 1) = Φ{β0 + β1Xij + β2I(Qij = 2) + β3I(Qij = 3) + β4I(Qij = 4) +β5I(Qij = 5)}.
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Table 4

The mean of 5000 simulations of estimated coefficients (Mean), empirical standard deviation (SD), average 

standard error (SE) and the 95% interval coverage rate (COVER) for the maximum-likelihood, naive and GEE 

methods of the misspecified model with σb = 1.5, N = 2000

Parameter* True Mean SD SE COVER

ML Pr(Z = 1) 0.700 0.730 0.015 0.015 0.472

σ b 1.500 0.624 0.037 0.038 0.000

β 0 0.000 −0.046 0.039 0.039 0.776

β 1 0.555 0.561 0.024 0.024 0.941

β 2 −0.277 −0.273 0.036 0.046 0.986

β 3 −0.222 −0.218 0.036 0.045 0.987

β 4 0.111 0.103 0.047 0.044 0.933

β 5 0.222 0.208 0.046 0.045 0.934

GLMM σ b 1.500 1.201 0.038 0.039 0.000

β 0 0.000 −0.416 0.029 0.030 0.000

β 1 0.555 0.378 0.024 0.022 0.000

β 2 −0.277 −0.206 0.027 0.034 0.425

β 3 −0.222 −0.164 0.027 0.034 0.613

β 4 0.111 0.079 0.034 0.033 0.816

β 5 0.222 0.153 0.033 0.032 0.432

GEE-MI Pr(Z = 1) 0.700 0.712 0.080 0.082 0.948

β 0 0.000 −0.005 0.153 0.159 0.963

β 1 0.555 0.558 0.066 0.067 0.954

β 2 −0.277 −0.278 0.048 0.049 0.946

β 3 −0.222 −0.222 0.045 0.045 0.949

β 4 0.111 0.111 0.054 0.054 0.951

β 5 0.222 0.223 0.058 0.06 0.954

GEE-CI Pr(Z = 1) 0.700 0.707 0.066 0.066 0.944

β 0 0.000 −0.001 0.129 0.130 0.966

β 1 0.555 0.558 0.058 0.058 0.960

β 2 −0.277 −0.279 0.046 0.046 0.948

β 3 −0.222 −0.223 0.043 0.043 0.950

β 4 0.111 0.112 0.053 0.052 0.950

β 5 0.222 0.224 0.057 0.058 0.951

GEE-ME Pr(Z = 1) 0.700 0.709 0.069 0.068 0.948

β 0 0.000 −0.004 0.132 0.133 0.951

β 1 0.555 0.557 0.060 0.060 0.952

β 2 −0.277 −0.278 0.046 0.046 0.946

β 3 −0.222 −0.222 0.043 0.043 0.946
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Parameter* True Mean SD SE COVER

β 4 0.111 0.112 0.054 0.054 0.950

β 5 0.222 0.224 0.058 0.059 0.953

GEE-CE Pr(Z = 1) 0.700 0.709 0.067 0.066 0.946

β 0 0.000 −0.004 0.129 0.130 0.959

β 1 0.555 0.556 0.058 0.058 0.954

β 2 −0.277 −0.279 0.045 0.046 0.948

β 3 −0.222 −0.223 0.043 0.043 0.948

β 4 0.111 0.111 0.053 0.052 0.948

β 5 0.222 0.224 0.057 0.058 0.951

GEE-UN Pr(Z = 1) 0.700 0.711 0.073 0.073 0.951

β 0 0.000 −0.005 0.140 0.142 0.954

β 1 0.555 0.557 0.061 0.061 0.952

β 2 −0.277 −0.278 0.047 0.047 0.947

β 3 −0.222 −0.222 0.044 0.044 0.948

β 4 0.111 0.111 0.053 0.053 0.950

β 5 0.222 0.223 0.058 0.059 0.953

*
P(Yij = 1|Xi, Qij, Zi = 1) = Φ{β0 + β1Xij + β2I(Qij = 2) + β3I(Qij = 3) + β4I(Qij = 4) +β5I(Qij = 5)}.
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Table 5

Summary statistics of the dating violence example. Percentage is reported for the categorical variables and 

mean (standard deviation) is reported for the continuous variables

Variable Summary statistics (n = 2023)

Gender: female 56.6%

DS score 2.0 (1.0)

Family relationship 7.4 (2.3)

Family influence 5.7 (1.8)

Question 1V—Insult you 18.5%

Question 1P—Insult your boyfriend/girlfriend 16.8%

Question 2V—Swear at you 31.3%

Question 2P—Swear at your boyfriend/girlfriend 26.1%

Question 3V—Threaten you 7.2%

Question 3P—Threaten your boyfriend/girlfriend 5.6%

Question 4V—Push you 13.5%

Question 4P—Push your boyfriend/girlfriend 9.9%

Question 5V—Throw object at you 4.5%

Question 5P—Throw object at your boyfriend/girlfriend 3.8%
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